

The Story of Xanthon, Inc.

January 2007

Scientific Entrepreneurship: Why do we do it?

- Individual grants from the federal government provide support for graduate students and postdoctoral associates, but not...
- More senior personnel with industrial experience
- Product development
- Clinical trials
- Big equipment
- Heavy patent filing and prosecution

Government agencies are now LOOKING for spinouts from federal research.

Words of Wisdom

"You do not merely want to be considered just the best of the best. You want to be considered the only ones who do what you do."

Jerry Garcia

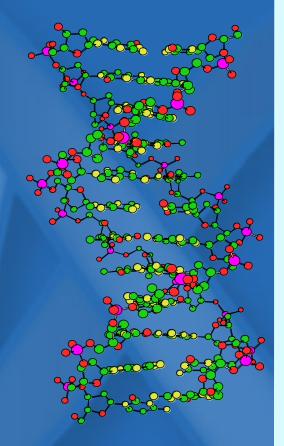
History of Xanthon

Founded on UNC technology in 1996

Over \$30M raised from regional investor group: Intersouth Partners (RTP), Franklin Street Partners (RTP), Aurora Funds (RTP), Noro-Moseley Partners (Atlanta)

Company grew to as many as 62 employees

Facts About the Human Genome


Over 3 billion nucleotides long

Contains 30,000 genes

All cells have the same genome

What makes cells different is which genes are "expressed"

The amount of mRNA present indicates the expression of a gene

Genomics Business Models

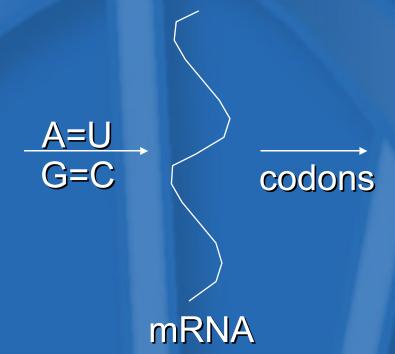
Gene sequencing - Celera

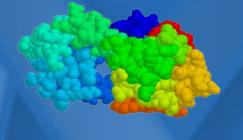
Gene sequencing tools – Applied Biosystems

High-content, low-throughput gene expression tools – Affymetrix, Rosetta

Probe diagnostics – GenProbe, Myriad Genetics

Low-content, high-throughput gene expression - unserved

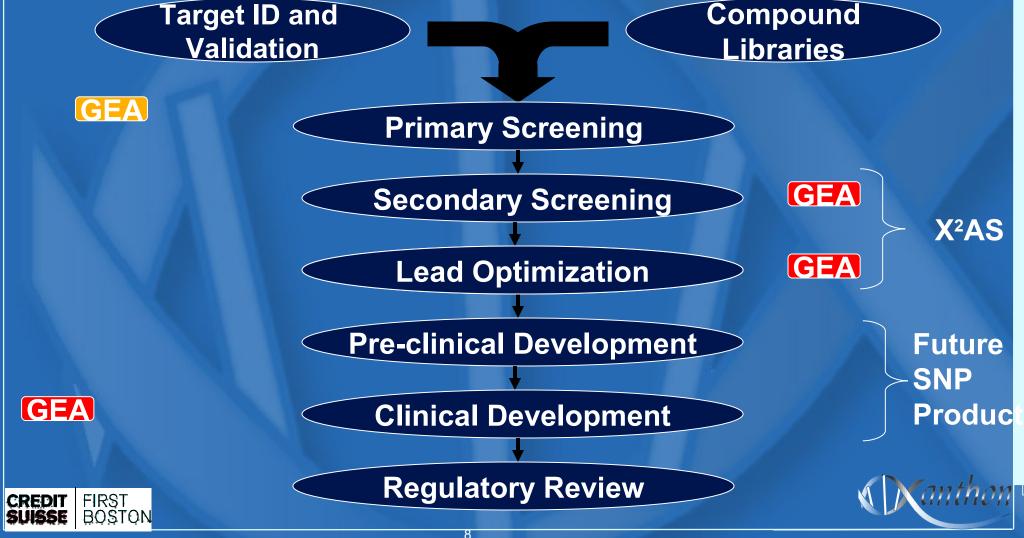



Genes and Gene Expression

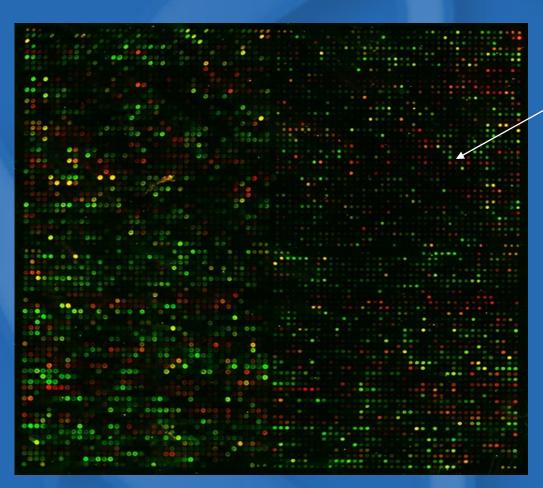
A=T G=C DNA

Rough draft of Human Genome Project complete

Different genes are "turned on" in different cells. Humans have ~20,000 genes.


Protein

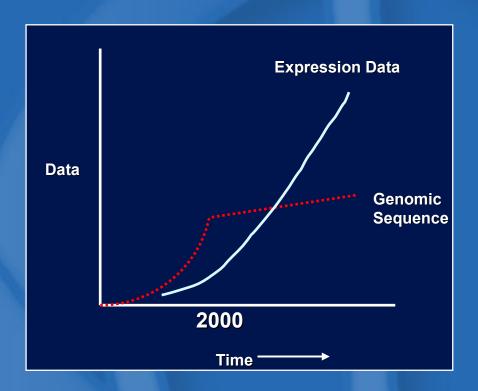
Design inhibitors
for therapy


() Canthon

Drug Discovery & Development

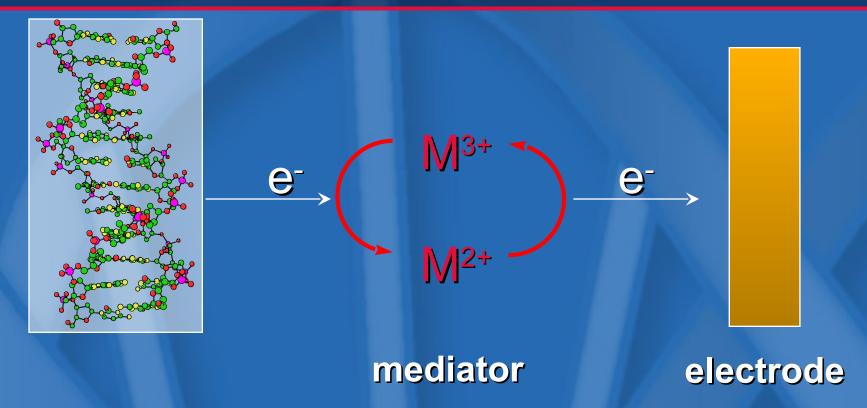
Expression Analysis

Individual mRNA sensing sites


Fluorescent tags attached to mRNA with imaging by microscope

DNA --- mRNA --- proteir

Predicted Growth of Expression Analysis



"If this were a marathon, we would just be lacing up our shoes. For now the really hard work begins: discovering the function of genes and how they relate to each other." Henri Termeer, CEO, Genzyme, September 2000

DNA and Electrodes

- Mediator transfers electrons efficiently
- DNA can be immobilized for maximum specificity and hybridization

Intellectual Property

United States Patent [19]

435/91.51; 935/6, 17, 77, 78

[54] ELECTROCHEMICAL DETECTION OF NUCLEIC ACID HYBRIDIZATION

[75] Inventors: H. Holden Thorp, Chapel Hill, N.C.; Carson R. Loomis, Roxboro, N.C. Mark E. Sistare; Jinheung Kim, both

[73] Assignee: The University of North Carolina at

[21] Appl. No.: 667,338

Thorp et al.

[22] Hiled: Jun. 20, 1996 Related U.S. Application Data

[60]	Provisional application No. 60, provisional application No. 60,	016,265 Apr. 19, 1996 au 0016,265 Apr. 19, 1996 au
[51]	Int. CL ⁶	C12Q 1/68; C12P 19/3/
[52]	U.S. Cl. 43	
	435/91.51; 935/h;	; 935/17; 935/77; 935/78
1501	Piold of Seconds	435/6 OT 2 DL 5

References Cited

U.S. PATENT DOCUMENTS

4,704,353	11/1987	Humphries et. al
4.840.893	6/1989	Hill et al
4,883,579	11/1989	Humphries et al 204/403
4,908,307	3/(990	Rodland et al
4.963,815	10/1990	Huteman
5,108,889	4/1992	Smith
5,112,974	5/1992	
5,143,854	9/1992	Pirrung et al 436/518
5,157,032	10/1992	Barriem
5,171,853	12/1992	Them et al
5.175.062	12/1992	Jeffreys 435/6
5.194.372	3/1993	Nagai et al 435/6
5,272,054	12/1993	Burrows et al
5,278,043	1/1994	Banawarth et al 536/23.1
5,312,527	5/1994	Mikkelsen et al 204/153.12
5,405,783	4/1995	Pinung et al 436/518
5,439,829	8/1995	Anderson et al

POREIGN PATENT DOCUMENTS

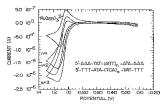
0 478 317	4/1992	European Pat.
3076600	4/1992	Лирии .
WO 8502627	6/1985	WIPO .
WO 91/15768	10/1991	WIPO .
WO93/20230	10/1993	WIPO .
WO 94/22889	10/1994	WIPO .
WO 95/00530	1/1995	WIPO .

OTHER PUBLICATIONS

Adams et al. Editors "The Biochemistry of Nucleic Acids", Chapman & Hall, New York pp. 519-524, 1992.

D. H. Johnston et al.; Electrochemical Measurement of the Solvent Accessibility of Nucleobases Using Electron Transfer between DNA and Metal Complexes, J. Am. Chem. Soc. 117:893–8938 (1995).

K. M. Millan et al.; Sequence–Selective Biosensor for DNA Based on Electroactive Hybridization Indicators, Anal. Chem. 65:2317–2323 (1983).

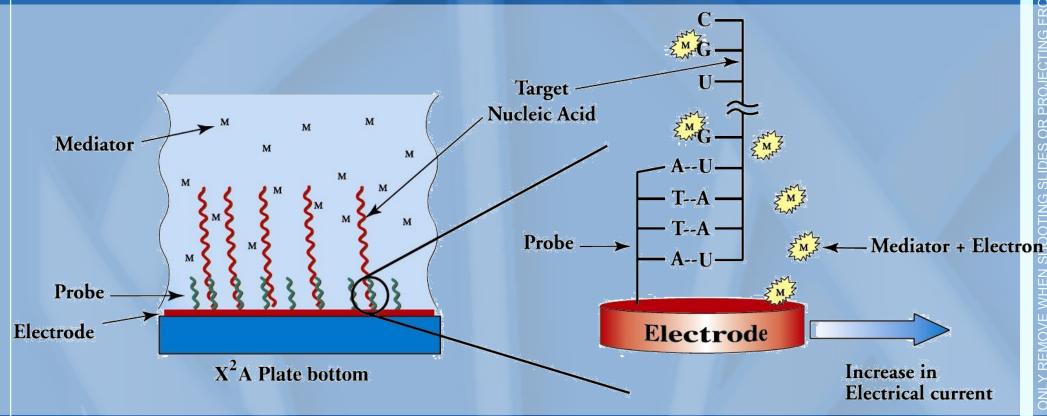

W. Bains; The Chip of the 90s, Chem. in Britain 122-125

(List continued on next page.)

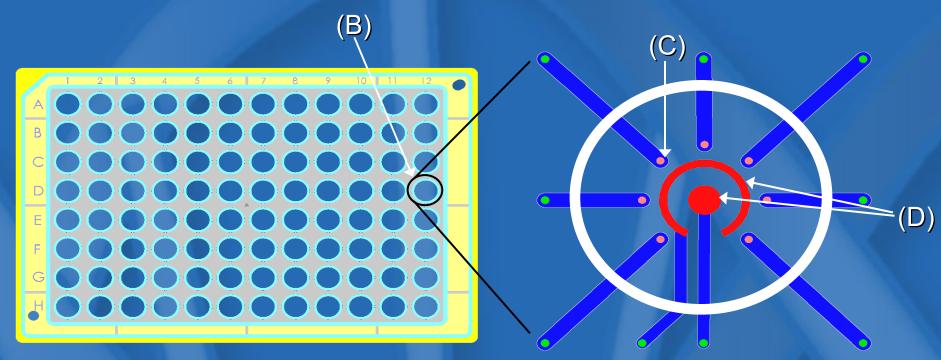
Primary Examiner-W. Gary Jones Assistant Examiner Dohra Shoomaker Attorney, Agent, or Firm—Myers Bigel Sibley & Sajover

A method of detecting a nucleic acid (e.g., DNA, RNA) that contains at least one preselected base (e.g., adenine, guanine, 6-mercaptoguanine, 8-oxo-guanine, and 8-oxo-adenine) comprises (a) reacting the nucleic acid with a transition metal complex complex of exidizing the preselected base in an exidation-reduction reaction; (b) detecting the exidation-reduction reaction; (c) detecting the exidation-reduction reaction; and (c) determining the presence of absence of the micleic acid from the detected oxidationreduction reaction at the presclected base. The method may he used in a variety of applications, including DNA sequencing, diagnostic assays, and quantitative analysis

106 Claims, 11 Drawing Sheefs



- •U.S. Patent 5,871,918
- •Inventors: Thorp, Johnston, Napier, Loomis, Sistare, Kim
- •139 claims including CIP
- •Filing date: June 1995
- Xanthon technology now encompasses over 15 US patents

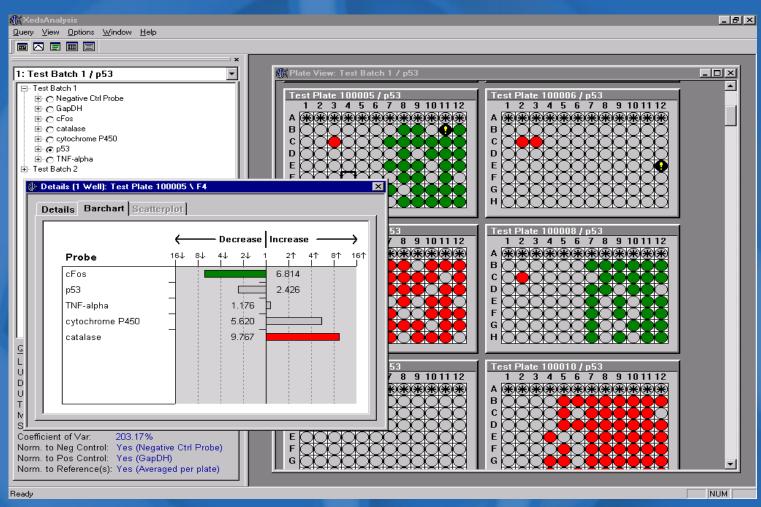

Detection of Target Nucleic Acids

The Plate

(A)

- A) The Plate
- B) One well of the Plate
- C) Electrodes: seven in each well, 5 samples, 2 controls
- D) Reference and counter electrodes

Xanthon Xpression Analysis System™ (X²AS)



- High-throughput
 - > 27,000 samples/day
 - > 190,000 assays/day
- Multiplex7 assays per sample
- Direct Detection (No labels)
- Universal Format
- Assay Simplicity
- Assay Flexibility
- Assay Quality

Powerful Bioinformatics Software

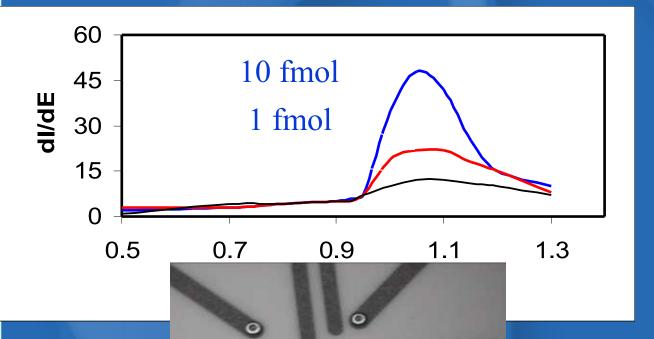
Xanthon Sales and Marketing

Trade Show Booth

Information Technologies Today To Discover The Drugs Of Tomorrow

High Throughput Systems For Expression Analysis & SNP Detection.

XANTHON Inc. 104 TW Alexander Drive Research Triangle Park, NC 27709-2296 919 572-0707 www.xanthon.net info@xanthon.net



VISIT US AT BOOTH #220

mRNA Detection

Target: ApoA1 mRNA in cell lysate

LOD: 250 amol of ApoA1 mRNA in cell lysate in 50 μ well

Development Status: Xanthon Xpression Analysis System™

- ✓ Xanthon XpressionAnalysis Instrument
 - **☑** Plate reader
 - **☑** Plate handler
 - **☑** Control software
- **✓** Xanthon Xpression Software Module
- ✓ Xanthon XpressionAnalysis Plate
 - **☑** Test procedure
 - □ Optimize plate manufacturing
 - **□** Optimize reagents

UNC-Motorola

- Xanthon's principal competitor
 Clinical Micro Sensors
 (eSensor) acquired by Motorola
 for \$300M in March 2000
- Xanthon pursues IPO etc. anyway
- Motorola acquires Xanthon technology for debt in January 2003
- UNC-Motorola relationship continues

Xanthon Story – Latest Developments

- HT becomes Xanthon president after MOT sale
- •GE Capital forces Xanthon into Chapter 7 bankruptcy
- Court/GE dismisses bankruptcy
- MOT support upped to \$1.1 M
- Osmetech LLC acquires CMS/Xanthon IP from Motorola
- Jan 2006: Osmetech gets FDA approval for Sensor based on Xanthon and Motorola IP!!!

What did I learn? - The \$30M MBA

- 1. Always have a unique story Garcia's Law
- 2. Wait for the right CEO right mix of science and business skills
- 3. Have a national focus (not just regional) technology and investor group
- 4. Don't bet it all on just one technology
- 5. Assume the market is going to get bad
- 6. Don't build a sales force for a product that doesn't exist.

Morehead Planetarium and Science Center 2001 - 2004

- 1. Unique story: only student-fronted science center in world
- 2. Wait for right CEO: became interim CEO myself rather than take the wrong person, scrapped first succession plan
- 3. National focus: made planetarium shows and films that are exhibited at other great institutions (AMNH)
- 4. Don't bet on one technology: added films and camps to star theater as revenue generators

